
Package: rSpectral (via r-universe)
September 11, 2024

Type Package

Title Spectral Modularity Clustering

Version 1.0.0.11

Description Implements the network clustering algorithm described in
Newman (2006) <doi:10.1103/PhysRevE.74.036104>. The complete
iterative algorithm comprises of two steps. In the first step,
the network is expressed in terms of its leading eigenvalue and
eigenvector and recursively partition into two communities.
Partitioning occurs if the maximum positive eigenvalue is
greater than the tolerance (10e-5) for the current partition,
and if it results in a positive contribution to the Modularity.
Given an initial separation using the leading eigen step,
'rSpectral' then continues to maximise for the change in
Modularity using a fine-tuning step - or variate thereof. The
first stage here is to find the node which, when moved from one
community to another, gives the maximum change in Modularity.
This node’s community is then fixed and we repeat the process
until all nodes have been moved. The whole process is repeated
from this new state until the change in the Modularity, between
the new and old state, is less than the predefined tolerance. A
slight variant of the fine-tuning step, which can improve speed
of the calculation, is also provided. Instead of moving each
node into each community in turn, we only consider moves of
neighbouring nodes, found in different communities, to the
community of the current node of interest. The two steps
process is repeatedly applied to each new community found,
subdivided each community into two new communities, until we
are unable to find any division that results in a positive
change in Modularity.

URL https://github.com/cmclean5/rSpectral

BugReports https://github.com/cmclean5/rSpectral/issues/

License GPL-2

Encoding UTF-8

1

https://doi.org/10.1103/PhysRevE.74.036104
https://github.com/cmclean5/rSpectral
https://github.com/cmclean5/rSpectral/issues/

2 rSpectral

RoxygenNote 7.2.1

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.8.3), Rdpack, igraph, graph

RdMacros Rdpack

LinkingTo Rcpp, RcppArmadillo(>= 0.11.2.0.0)

Suggests RColorBrewer, Rgraphviz, igraphdata, testthat (>= 3.0.0)

Config/testthat/edition 3

Repository https://cmclean5.r-universe.dev

RemoteUrl https://github.com/cmclean5/rspectral

RemoteRef HEAD

RemoteSha 2149230346a9deacbf145944fcf75736d43782df

Contents
rSpectral . 2
spectral_graphNEL . 3
spectral_igraph_communities . 4
spectral_igraph_membership . 5

Index 7

rSpectral rSpectral

Description

This package implements the Spectral Modularity clustering algorithm for igraph and graphNEL
graphs. The algorithm was proposed in (Newman 2006) and an example of its application to the
real biological network could be found in (Roy et al. 2018).

Author(s)

Colin Mclean <Colin.D.Mclean@ed.ac.uk>

References

Newman MEJ (2006). “Finding community structure in networks using the eigenvectors of matri-
ces.” Phys. Rev. E, 74(3), 036104. doi:10.1103/PhysRevE.74.036104, https://link.aps.org/
doi/10.1103/PhysRevE.74.036104.

Roy M, Sorokina O, McLean C, Tapia-González S, DeFelipe J, Armstrong JD, Grant SGN (2018).
“Regional Diversity in the Postsynaptic Proteome of the Mouse Brain.” Proteomes, 6(3), 31. ISSN
2227-7382, doi:10.3390/proteomes6030031, https://www.mdpi.com/2227-7382/6/3/31.

https://doi.org/10.1103/PhysRevE.74.036104
https://link.aps.org/doi/10.1103/PhysRevE.74.036104
https://link.aps.org/doi/10.1103/PhysRevE.74.036104
https://doi.org/10.3390/proteomes6030031
https://www.mdpi.com/2227-7382/6/3/31

spectral_graphNEL 3

See Also

Useful links:

• https://github.com/cmclean5/rSpectral

• Report bugs at https://github.com/cmclean5/rSpectral/issues/

spectral_graphNEL Spectral clustering for graphNEL objects

Description

Spectral clustering for graphNEL objects

Usage

spectral_graphNEL(g, Cn_min = 1L, tol = 1e-05, names = 1L, fix_neig = 0L)

Arguments

g graphNEL object

Cn_min minimum cluster size

tol tolerance

names are we dealing with alphaNumeric (1) or numeric (!1) ids

fix_neig whether to fix neighbouring nodes found in same community

Value

data.frame with node names and membership information

See Also

spectral_igraph_membership

Examples

library(graph)
V = letters[1:12]
g2 = randomEGraph(V, edges=20)
mem.df = spectral_graphNEL(g2)
head(mem.df)

https://github.com/cmclean5/rSpectral
https://github.com/cmclean5/rSpectral/issues/

4 spectral_igraph_communities

spectral_igraph_communities

Spectral clustering for igraph objects

Description

This function invoke spectral_igraph_membership to calculate clustering and convert it into
communities object for seamless work with native igraph clustering functions.

Usage

spectral_igraph_communities(
g,
Cn_min = 1L,
tol = 1e-05,
names = 1L,
fix_neig = 0L

)

Arguments

g igraph object

Cn_min minimum cluster size

tol tolerance

names are we dealing with alphaNumeric (1) or numeric (!1) ids

fix_neig whether to fix neighbouring nodes found in same community

Value

communities object

Examples

data(karate,package='igraphdata')
c<-spectral_igraph_communities(karate)

spectral_igraph_membership 5

spectral_igraph_membership

Spectral clustering for igraph objects

Description

This function implements the network clustering algorithm described in (M. E. J. Newman, 2006).

Usage

spectral_igraph_membership(
g,
Cn_min = 1L,
tol = 1e-05,
names = 1L,
fix_neig = 0L

)

Arguments

g igraph object

Cn_min minimum cluster size

tol tolerance

names are we dealing with alphaNumeric (1) or numeric (!1) ids

fix_neig whether to fix neighbouring nodes found in same community

Details

The complete iterative algorithm comprises of two steps. In the first step, the network is expressed
in terms of its leading eigenvalue and eigenvector and recursively partition into two communities.
Partitioning occurs if the maximum positive eigenvalue is greater than the tolerance (tol=10-5) for
the current partition, and if it results in a positive contribution to the Modularity.

Given an initial separation using the leading eigen step, the function then continues to maximise
for the change in Modularity using a fine-tuning step - or variate thereof. The first stage here is to
find the node which, when moved from one community to another, gives the maximum change in
Modularity. This node’s community is then fixed and we repeat the process until all nodes have
been moved. The whole process is repeated from this new state until the change in the Modularity,
between the new and old state, is less than the predefined tolerance (tol).

A slight variant of the fine-tuning step, which can reduce execution time by factor 2 to 5, is also
provided. Instead of moving each node into each community in turn, we only consider moves
of neighbouring nodes, found in different communities, to the community of the current node of
interest. This variant of the node-moving algorithm effectively ‘fixes‘ neigbouring nodes fix_neig
in the community being considered.

The two steps process is repeatedly applied to each new community found, subdivided each com-
munity into two new communities, until we are unable to find any division that results in a positive

6 spectral_igraph_membership

change in Modularity. An additional stopping criteria, based on the minimum cluster size Cn_min,
is also provided.

Value

data.frame with node names and membership information

Examples

data(karate,package='igraphdata')
df.mem<-spectral_igraph_membership(karate)

Index

communities, 4

graphNEL, 2, 3

igraph, 2, 4

rSpectral, 2
rSpectral-package (rSpectral), 2

spectral_graphNEL, 3
spectral_igraph_communities, 4
spectral_igraph_membership, 3, 4, 5

7

	rSpectral
	spectral_graphNEL
	spectral_igraph_communities
	spectral_igraph_membership
	Index

